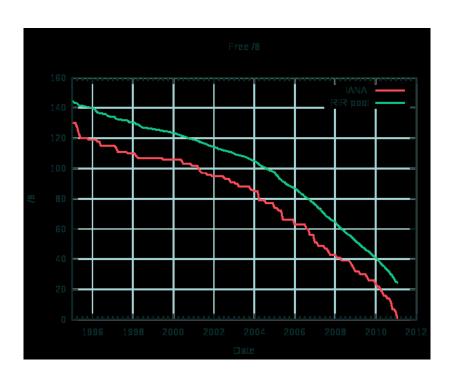


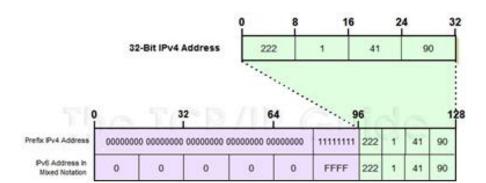
Agenda


- IPV6: What is it?
- Why Migrate?
- Migration Challenges
- Infoblox Solutions

What's Driving IPv6?

IPv4 address consumption

- Top level (IANA) is completely gone
- Regional Registries running out
- Stop-gap measures are short term
 - Reclaiming unused ranges
 - Microsoft buys Nortel Class-Bs
- Growing sense of urgency
 - Must have for ISPs
 - Government mandates
 - Media creating corporate awareness


- = Internet Assigned Numbers Authority (Top Level)
- __ = Regional Internet Registries

How is IPv6 Different?

A Few Examples ...

- Larger address space
 - IPv4 = 4 Billion
 - IPv6 = 340 undecillion (36 zero)
- More numerous, larger subnets
- Different numbering system
 - Random IPv4 = 222.1.41.90
 - Random IPv6 = FEDC:BA98:0332:0000:CF8A:000C:2154:7313
- More DHCP options
- Stateless Auto Configuration (SLAAC)
- Different DNS record formats
 - IPv4 = A record
 - IPv6 = AAAA record

ARIN's Guidelines

Organization type	Recommendation	
Broadband Providers	 Your customers want access to the entire Internet, and this means IPv4 and IPv6 websites. Offering full access requires running IPv4/IPv6 transition services and is a significant engineering project. Multiple transition technologies are available, and each provider needs to make its own architectural decisions. 	
Internet Service Providers	 Plan out how to connect businesses via IPv6-only and IPv4/IPv6 in addition to IPv4-only. Businesses are beginning to ask for IPv6 over their existing Internet connections and for their co-located servers. Communicate with your peers and vendors about IPv6, and confirm their timelines for production IPv6 services. 	
Content providers	 Content must be reachable to newer Internet customers. Content served only via IPv4 will be accessed by IPv6 customers via transition solutions run by access providers. Plan on serving content via IPv6 in addition to IPv4 as soon as possible. 	
Enterprise	 Mail, web, and application servers must be reachable via IPv6 in addition to IPv4. Open a dialogue with your Internet Service Provider about providing IPv6 services. Each organization must decide on timelines, and investment level will vary. 	
Government	 Coordinate with industry to support and promote awareness and educational activities. Adopt regulatory and economic incentives to encourage IPv6 adoption. Require IPv6 compatibility in procurement procedures. Officially adopt IPv6 within your government agencies. 	
Equipment Manufacturers	Introduce IPv6 support into your product cycle as soon as possible	

About IPv4 and IPv6

IP version	IPv4	IPv6
Deployed	1981	~1999
Address Size	32-bit number	128-bit number
Address Format	Dotted Decimal Notation: 192.0.2.76	Hexadecimal Notation: 2001:0DB8:0234:AB00: 0123:4567:8901:ABCD
Number of Addresses	$2^{32} = 4,294,967,296$	$2^{128} = 340,282,366,920,938,463,$ 463,374,607,431,768,211,456
Examples of Prefix Notation	192.0.2.0/24 10/8	2001:0DB8:0234::/48 2600:0000::/12
Security	IPSec	IPSec Mandated, works End-to-End
Mobility	Mobile IP	Mobile IP with Direct Routing
Quality of Service	Differentiated/Integrated Service	Differentiated/Integrated Service
IP Multicast	IGMP/PIM/Multicast BGP	MLD/PIM/Multicast, BGP, Scope Identifier

- Expanded addressing capabilities
- Structured hierarchy to manage routing table growth
- Server less auto-configuration and reconfiguration
- Streamlined header format and flow identification
- Improved support for options / extensions

A wide range of techniques have been identified and implemented

- Dual-stack techniques, to allow IPv4 and IPv6 to co-exist in the same devices and networks
- Tunneling techniques, to avoid order dependencies when upgrading hosts, routers, or regions
- Translation techniques, to allow IPv6-only devices to communicate with IPv4-only devices

Expect all of these to be used, in combination.

Migration Considerations

Security policies need to be revised

Security issues with IPv4 are well documented; IPv6 remains unexplored

Application compatibility needs to be verified

- Not all of your existing applications are IPv6 compliant
- Upgrades may be required

V6 compatibility in networking equipment often comes with performance risks

Unlike IPv4 several IPv6 implementations not yet optimized

Backend tools are lacking

Current management and troubleshooting tools and methods may not work

SPAM tools need to be reinvented.

Heavy reliance on DNS

Testing v6 Services for Compatibility

Few reference implementations to test against

Is the World Ready?

The Good News: The industry has prepared

- Most modern OS are ready
 - Windows 7
 - MacOS X
 - Linux
 - Android and Apple iOS
- Most modern infrastructure is ready
 - Routers
 - Switches
 - Firewalls
 - Application Deliver Controllers (SLBs)
 - WAN Optimization
- IPv6 already routed over Internet

The Bad News: Many customers are unprepared

- Investigating but no active plan
- Some legacy infrastructure doesn't work
- Many applications don't support IPv6
- Very little IT organizational experience

Network configuration and DDI are fragile

Manual change – one by one

- Repetitive tasks for expensive staff
- Hope for no fat fingers or bad copy and paste

Custom scripts (i.e. PERL)

- One expert, hope they never leave
- Always adding more and more over time

We are the experts

- Assume it works, hope for the best
- If it breaks, go fix it

Rely on the change management process

- No one ever makes an undocumented change
- All changes occur within the window and process
- Assume all details are up to date and correct

IPV6 migration will expose these risks

Network Automation: Key to a successful migration

Automate

- Network configuration and change
 - Change management for IPV6 enabled devices
- IP Address Assignments and reclaiming
 - Replace spreadsheets based IP space management
- Subnet calculation and allocation
 - Automated calculation and documentation
- DNS configuration
 - AAAA records are hard to manage manually
 - Reverse DNS zones with IPV6

Infoblox IPv6 Support Highlights

Leadership

Extend current IPv6 DDI solution with unique features that help customers more easily incorporate IPv6 into their network

Low Risk Adoption

Helps customers plan and execute gradual adoption of IPv6 technology without intrusive architectural change or network disruption

Powerful New Features

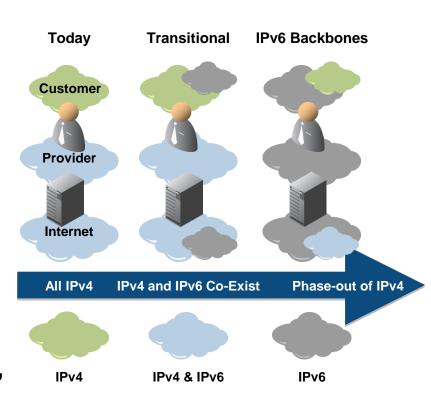
- IPv6 IPAM automation
- Dual stack IPv4 and IPv6 services
- IPv6 DHCP for dynamic address allocation
- DHCP IPv6 prefix delegation option
- DNS64 to translate IPv6 DNS lookups on IPv4 resources

Typical Customer Roadmap?

Be a Trusted Advisor

IPv6 at network edge for Internet facing services

- Web
- Email
- Cloud applications
- Time to deploy DNSSEC


Internal DNS/DHCP with dual stack IPv6 & IPv4

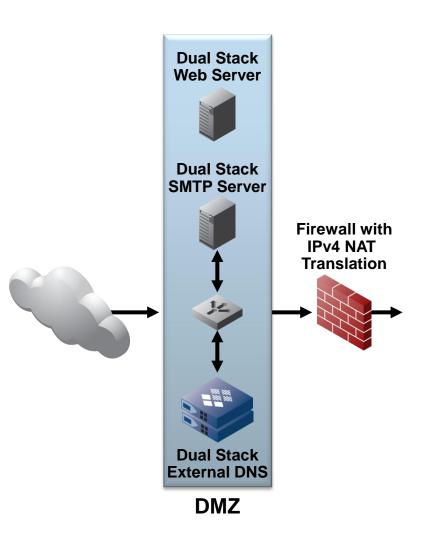
- Needs robust platform
- This may drive platform upgrades

Architectural migration to IPv6 backbone with "legacy islands"

- Translation technologies
- Broad use of tunneling

External DNS: What's Old is New Again

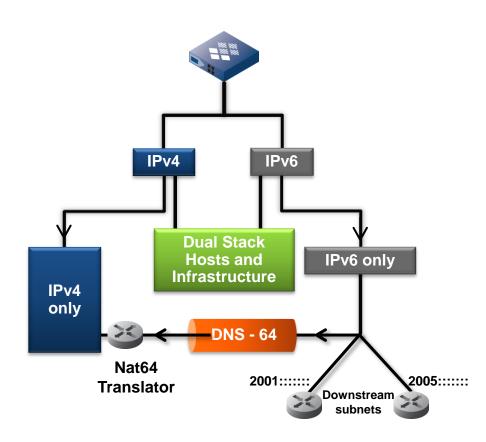
Major domains all signed


- .com announced April 11
- gov
- mil
- net
- edu

Dual stack servers in DMZ

- Respond to either IPv4 or IPv6
- Must accommodate double data
 - IPv4 DNS A records
 - IPv6 DNS AAAA records

Infoblox DNSSEC support


- High capacity appliance
- Also dual protocol
- Fully automated maintenance

Internal IPv6 Build-out

- IPAM Automation for IPv6
- 64-bit, dual stack appliances
- DHCP for IPv6
 - Dynamic addresses
 - Delegate ranges "downstream"
- DNS64 with NAT64 protocol to reach IPv4-only hosts
 - Legacy internal applications
 - Legacy external web servers
 - Partners (F5, Cisco, Juniper, etc.)

Infoblox solutions enable IPV6 migration

DNS/DHCP/IPAM Automation

- DNS/DNSSEC configuration automation
- IP address management automation

IPV6 Enabled Network Configuration Automation

- Network change automation
- Configuration management
- Compliance, policy enforcement and auditing

Infoblox tools for IPv6 migration and management

IPv6 Capable External Presence	 DNS for IPv6 Dual Stack DNS Appliance DNS64 	
Internal IPv6 Migration Planning		
Internal IPv6	 IPv6 IP Address Allocation, Tracking and Reclaiming DHCP for IPv6 IPv6 Subnet Allocation and Tracking Dual Stack Devices Tracking (Smart Folders) Reduced Complexity of Dual Stack Environment and IP Address Explosion 	
IPv6 Network Infrastructure Management	 Automated Network Change and Configuration for IPv6 Compliance, Policy Enforcement and Auditing 	

IPV6 Support in Infoblox Solution (DDI)

IPv6 Networking

- Members can have an IPv6 address (HA supported)
- Members will respond to DNS queries from/to IPv6 addresses
- Members will respond to zone transfers from/to IPv6 addresses

DNS and DHCP

- AAAA records in the forward zone
- o ip6.arpa reverse zone
- ACLs for IPv6 addresses and networks
- o **DNS64**
- DHCP for IPv6 with prefix delegation

IPv6 IPAM

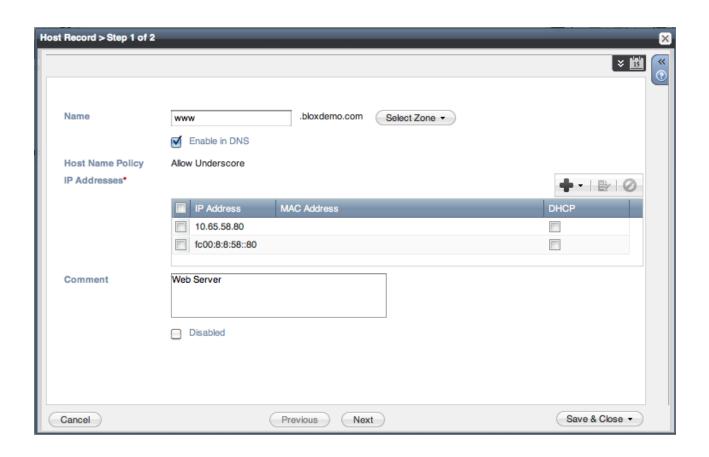
- o IPV6 subnets
- IPV6 address assignment
- Split/Join IPV6 networks
- Host objects with IPv6 IP address

IPV6 Support in Infoblox Solution (NCCM)

Automated network change automation and configuration management for IPv6

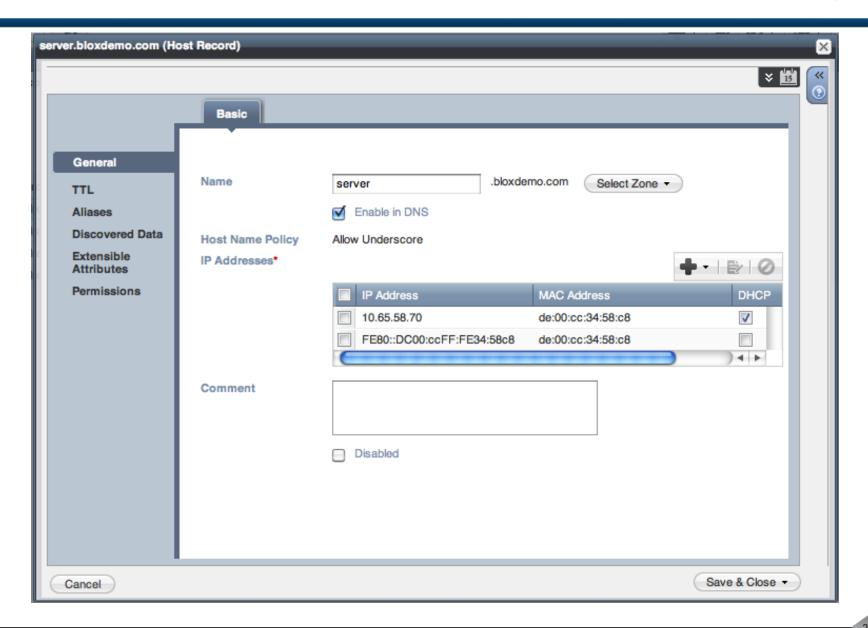
- Understand Cause & Effect
- Management view to health, policy and compliance
- Collect & analyze network infrastructure configurations
- Identify violations of best practice rules
- Identify security policy violations
- See the affect of change on health and policy
- o Identify, verify and remediate issues proactively

Compliance, policy enforcement and auditing for IPv6

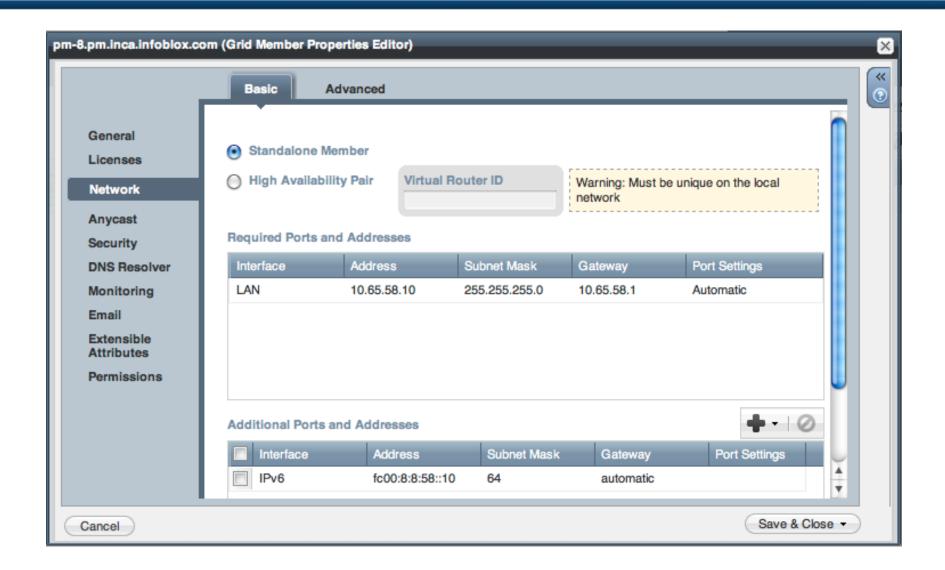

- Hundreds of packaged analysis rules
- Built-in remediation and compliance reports
- Proactive alerts for policy violations
- Live and historical status, trends and reports
- Wizard for encoding complex rule logic

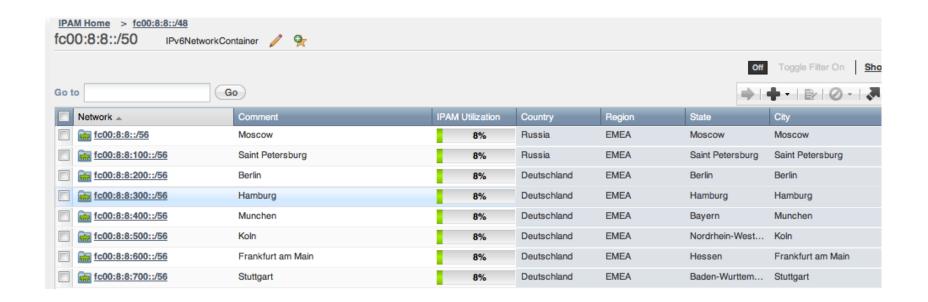
Dual Stack Host Records

- Single record for all IPv4 and IPv6 addresses associated with one interface
- Ensure DNS name is consistent for both IPv6 and IPv4 addresses


IPv6 Networks

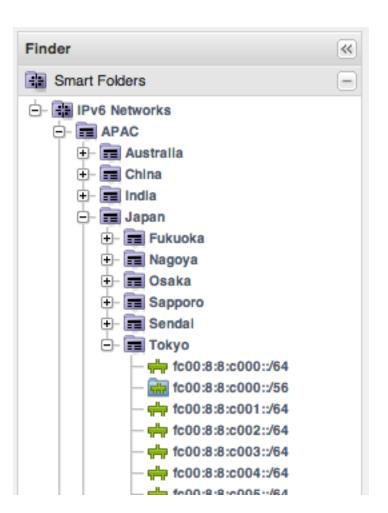
Network 🛦	Comment	IPAM Utilization
in fc00:8:8::/50	EMEA IPv6 Networks	78%
in fc00:8:8:4000::/50	North American IPv6 Networks	78%
fc00:8:8:8000::/50	Latin American IPv6 Networks	78%
fc00:8:8:c000::/50	Asia Pacific and Japanese IPv6 Networks	78%


Link-Local in Host Record

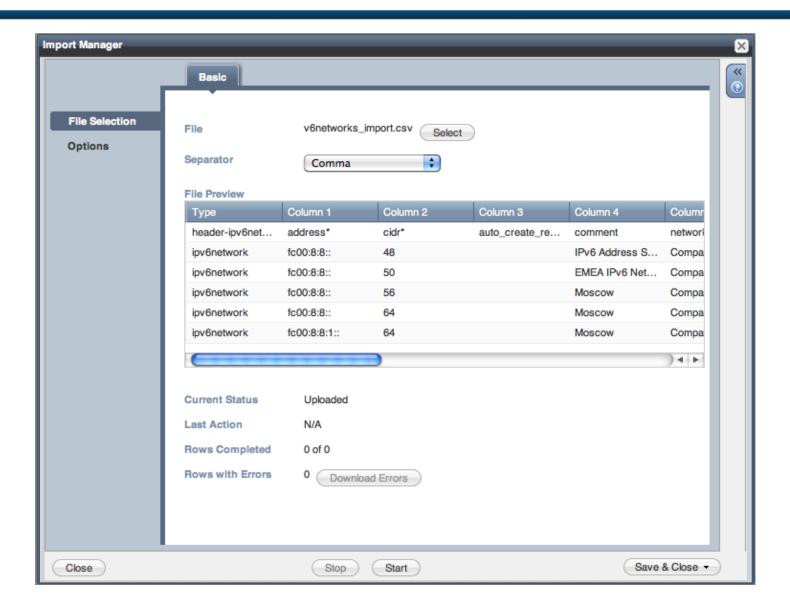

Automatic IPv6 Router Discovery – (GUI Setup)

Full IPv6 Network Meta Data

Table View

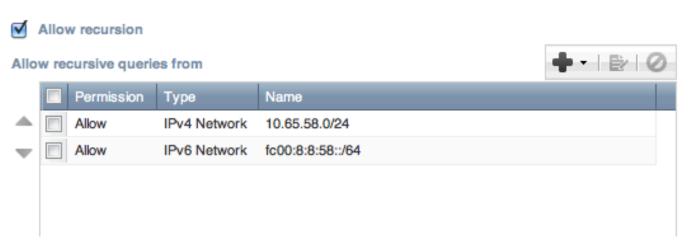

- Multiple columns with meta data
- Customizable columns

Full IPv6 Network Meta Data

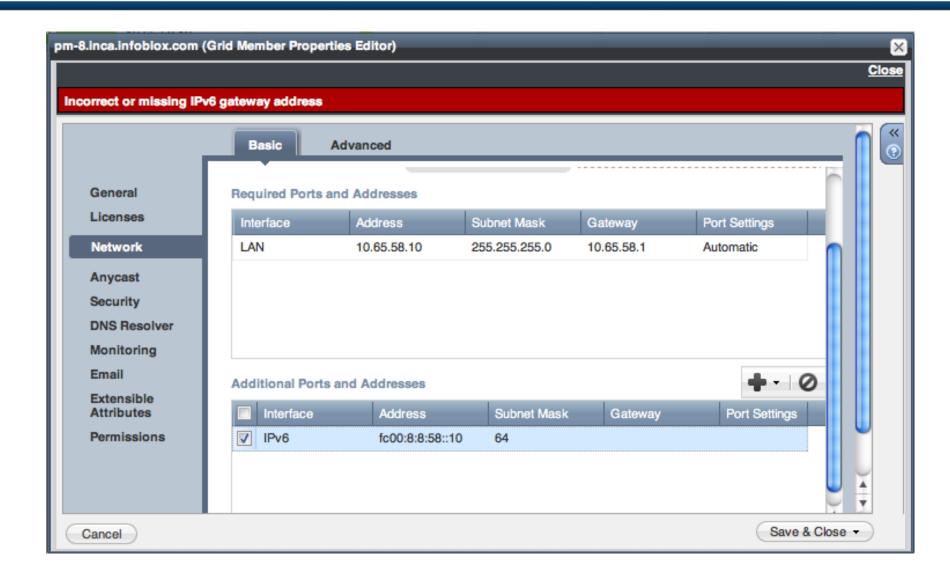

Smart Folders

- Report based on meta data
- Customizable
- Real Time
- Hierarchical

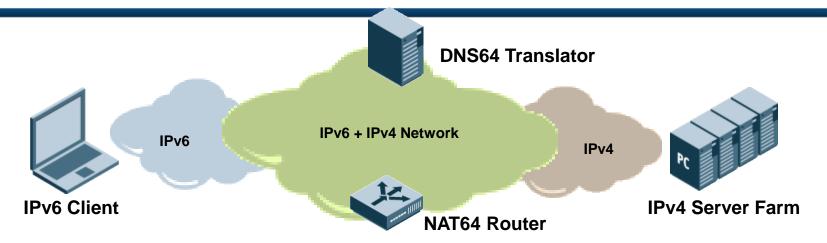
IPv6 CSV Import



IPv6 Query ACL Control

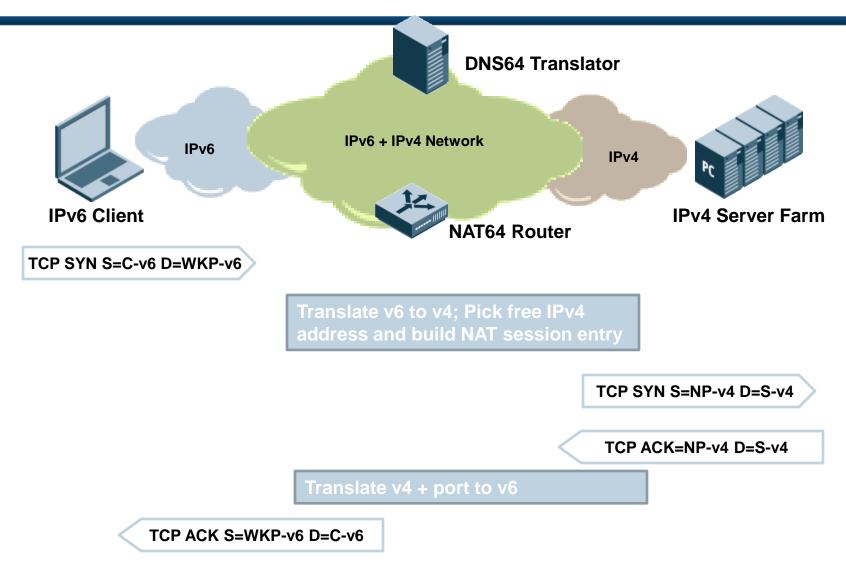


IPv6 Input Validation


DHCPv6 Operation

- Client sends messages to link-local multicast address
- Server unicasts response to client
- Information-Request / Reply provide client configuration information but no addresses
- Confirm / Reply assist in determining whether client moved
- Reconfigure allow servers to initiate a client reconfiguration
- Basic client/server authentication capabilities in base standard
- DHCP Unique Identifier (DUID) used to identify clients & servers
- Identity Association ID (IAID) used to identify a collection of addresses
- Relay Agents used when server not on-link
- Relay Agents may be chained

NAT64 Overview



- IPv6 Prefix dedicated to mapped IPv4 addresses
- DNS64 used to convert A records to equivalent AAAA records
- NAT64 router uses prefix to correctly route/attract IPv6 packets for routing to IPv4 network

NAT64: How does it work?

IPv6 Enablers in Infoblox solution

Feature	Infoblox	Notes
JITC IPv6 Certification	✓	
IPAM / Create IPv6 Networks	✓	
IPAM / Split/Join IPv6 Networks	✓	
IPAM / Auto-create ip6.arpa zones	1	Key feature. Typing in ip6.arpa zones is prone to errors
IPAM / Dual-stack hosts	/	IP Address management for dual stack devices
IPAM / Create IPv6 address based on MAC	✓	
IPAM / IPv6 Network Utilization Bars	/	
IPv6 Network Interfaces	/	Services can be configured to work with IPV4, IPV6 or both
DNS / AAAA records	/	
DNS / AAAA Shared Records	/	
DNS / IP6.ARPA Zone	✓	Just like IPv6
DNS / Mixed v4 and v6 ACLs	/	
Network Configuration and Change Management	/	NetMRI NCCM solution has full support for IPV6